Author Affiliations
Abstract
1 Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
2 Nanjing University, College of Electronic Science and Engineering, School of Physics, Nanjing, China
Thin-film lithium niobate is a promising material platform for integrated nonlinear photonics, due to its high refractive index contrast with the excellent optical properties. However, the high refractive index contrast and correspondingly small mode field diameter limit the attainable coupling between the waveguide and fiber. In second harmonic generation processes, lack of efficient fiber-chip coupling schemes covering both the fundamental and second harmonic wavelengths has greatly limited the overall efficiency. We design and fabricate an ultra-broadband tri-layer edge coupler with a high coupling efficiency. The coupler allows efficient coupling of 1 dB / facet at 1550 nm and 3 dB / facet at 775 nm. This enables us to achieve an ultrahigh overall second harmonic generation normalized efficiency (fiber-to-fiber) of 1027 % W - 1 cm - 2 (on-chip second harmonic efficiency ∼3256 % W - 1 cm - 2) in a 5-mm-long periodically-poled lithium niobate waveguide, which is two to three orders of magnitude higher than that in state-of-the-art devices.
thin-film lithium niobate ultrabroadband coupler second harmonic generation 
Advanced Photonics Nexus
2022, 1(1): 016001
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510000, China
2 Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Higher-Education Mega-Center, Guangzhou, China
3 Department of Electronic and Information Engineering, Photonics Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
4 State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
Optical modulators have been and will continue to be essential devices for energy- and cost-efficient optical communication networks. Heterogeneous silicon and lithium niobate modulators have demonstrated promising performances of low optical loss, low drive voltage, and large modulation bandwidth. However, DC bias drift is a major drawback of optical modulators using lithium niobate as the active electro-optic material. Here, we demonstrate high-speed and bias-drift-free Mach–Zehnder modulators based on the heterogeneous silicon and lithium niobate platform. The devices combine stable thermo-optic DC biases in silicon and ultra-fast electro-optic modulation in lithium niobate, and exhibit a low insertion loss of 1.8 dB, a low half-wave voltage of 3 V, an electro-optic modulation bandwidth of at least 70 GHz, and modulation data rates up to 128 Gb/s.
Photonics Research
2020, 8(12): 12001958

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!